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A curve segment is a point-bounded collection of points whose coordinates are given 
by continuous, one-parameter, single-valued mathematical functions of the form: 
 x = x(u)      y = y(u)      z = z(u) (1) 

The parametric variable u is constrained to the interval to the interval u ∈ [0,1], 
and the positive sense on a curve is the sense in which u increases. The curve is point 
bounded because it hase two definite end points, one at u = 0 and the other at u = 1. 

We treat the coordinates of any points on a parametric curve as the components of 
a vector p(u). Fig. 2.1 ilustrates this and other important vector elements. Note that 
ordinarily the tangent vectors will not be drawn to scale. Here, p(u) is the vector to 
the point x(u), y(u), z(u), and p''(u) is the tangent vector to the curve at the same point. 
It is found by differentiating p(u); thus, 
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and the vector components are: 
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Fig.1  

 
Vector elements of a parametric curve 

 
 
 
 



 

These are the parametric derivatives. The relationship between the parametric 
derivatives and the ordinary derivatives of Cartesian space is: 
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and similarly for dy/dz and dz/dx. We omit the functional notation when such a 
reference is obvious from the context, so that, for example: 
 p = p(u)         p'' = p''(u)         x'' = x''(u) (5) 

Refering to Figure 2.1 again, the vectors p(0), p''(0), p(1), and p''(1) are the 
boundary conditions. The curve is bounded by the point p(0) at u = 0 and by the point 
p(1) at u = 1. 

So far, we have presumed that p(u) is a three-component vector describing a 
curve in ordinary three-dimensional Cartesian space; however, it is not restricted to 
three components. Thus, in general, we have: 
 p(u) = [x1(u), x2(u), ... , xi(u), ... , xn(u)] 
for an n-components curve in an n-dimensional space. 
 

We know there are ways of representing a curve analytically other than with 
parametric equations. For example, one equation in x, y, z represents a surface, and 
two independent simultaneous equations in x, y, z, say,  
 F (x , y, z) = 0       G (x , y, z) = 0 (2.10) 
represent the intersection of two surfaces, which is locally a curve. They are called 
the implicit equations of a curve. A curve defined this way is inherently unbounded; 
however, only a bounded part of it may be of interest. 

If we solve the implicit equations for two of the variables in terms of the third, for 
y and z in terms of x, then the results are: 
 y = y (x)        z = z (x) (2.11) 

These equations represents the sane curve as Eqs. 2.10, and they, or the equations 
similarly expressing any two of the coordinates of a variable point on the curve as 
functions of the third coordinate, are the explicit equations of the curve. Each of Eqs. 
2.11 separately represent a cylinder projecting the curve onto one of the principal 
planes, so these equations are a special form of Eqs. 2.10 for which the two surfaces 
are projecting cylinders.  

If we solve the first of the three parametric Eqs. 2.1 of a curve for u as a function 
of x, u(x) and substitute the result into the two remaining expressions, we then obtain 
the explicit Eqs. 2.11 of the curve. From one point of view, these explicit equations, 
when supplamented by the identity x = x, are also parametric equations of the curve: 
 x = x        y = y (x)        z = z (x) (2.12) 
The parameter now is the coordinate x. 



 

The difficulty with this approach is the obviously unacceptable limitation on the 
range of x, since the parametric variable must be normalized to the interval x ∈ [0,1] 
by our established convention. We easily resolve the problem by introducing a 
parametric function of the forme: 
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This allows an explicit range of x from x0 to x1, provided u ∈ [0,1], through the 
parametric functions x(u), where: 

 x = x (u) = x0 + (x1 − x0)u (2.14) 
This satisfies the normalization constraint on the parametric variable without 

compromising the range of x. If we substitute this realtionship into Eqs. 2.12, we 
obtain: 

 x = x(u)      y = y[x(u)]      z = z[x(u)] (2.15) 
which simplifies to: 
 x = x(u)      y = y(u)      z = z(u) (2.16) 
Clearly, these are the parametric forms introduced in Eqs. 2.1.Tis means that we can 
convert a large class of explicit functions into a parametric form. 

Bezier (1972) correctly identified the fundamental property of parametric curves: 
Their shape depends on only the relative position of the points defining their 
characteristic vectors and is independent of the position of the total set of points with 
respect to the coordinate system in use. This is an essential characteristic for many 
applications, such as CAD/CAM modeling. In general, to transform an axis-
dependent curve, we must first compute the coordinates of every point required in the 
original system, then transform each into the new system. For axis-independent 
curves, it is sufficient to transform the points defining the characteristic vectors from 
one system to another. Matrix formulation greatly simplifies these operations, as we 
will see in later sections. 
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2.1 Algebraic and Geometric Form 

The algebraic form of a parametric cubic (pc) curve segment is given by the 
following three polynomials: 
 x(u) = a3xu3 + a2xu2 + a1xu + a0x  
 y(u) = a3yu3 + a2yu2 + a1yu + a0y (2.17) 
 z(u) = a3zu3 + a2zu2 + a1zu + a0z 
The parameter u, the independent variable, is restricted by definition to values in the 
interval 0 to 1, inclusive. This restriction makes the curve segment bounded. 


